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idealized arrangement must exist, just as is found 
for GeTe itself. The unidexed reflections reported 
could not be indexed on the basis of an h cp 
structure related to the cubic close packed model. 

At this stage more detailed statements about 
these structural distortions or the Ge atoms 
positions cannot be made except to point out that 
the indexed powder pattern indicates an almost 
body centred cell and so a body centred arrange- 
ment of Ge atoms might be expected. Although 
the proposed model for GeTe4 has three-quarters 
of the possible octahedral Ge sites unfilled it is 
pertinent to note that the non-stoichiometry of 
GeTe also implies vacant Ge sites. Indeed it is 
possible that the build-up of vacant germanium 
sites along antiphase domain boundaries as 
postulated by Stoemenos et al. for GeTe, in fact 
gives rise to a slab of structure related to that of 
GeTe4. 
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Comments on "Glass-ceramics with random 
and oriented microstructures Part 2 The 
physical properties of  a randomly oriented 
glass-ceramic'" 

Atkinson and McMillan have provided useful 
information on the mechanical, electrical and 
thermal properties of the glass ceramic material 
they studied [1]. However, consideration of their 
mechanical property results which are of 
particular interest to us, suggests that this aspect 
of their study is incomplete in a number of 
respects. 

Before turning to a detailed consideration of 
their experimental data and its analysis it is 
appropriate to consider the theoretical background. 
A common basis for such analysis, as recognized 
by Atkinson and McMillan, is the Griffith equation: 
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a = ( 1 )  

where e = the failure stress, A , - - a  flaw shape 
parameter, E = Young's modulus, 7 -- the fracture 
surface energy, and c is the flaw size. The first 
task is to determine whether or not the Griffith 
equation is valid for the particular conditions, or 
whether it can be made valid if appropriately 
modified. Validity can be established by measuring 
all parameters and showing that there is true 
equality. 

Two conditions pertinent to the present 
material can make the above simple form of the 
Griffith equation invalid. The first is the contri- 
bution to failure that may be made to the failure 
stress by internal stresses resulting from the 
incompatible strains either between grains of the 
typically non-cubic phases that are produced, or 
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between these phases and the residual glass matrix. 
Earlier work has shown that such stresses can add 
to the applied stress to aid failure [2] and more 
recent work corroborates this and shows that 
the extent to which these stresses add to the 
applied stress depends on the ratio of the flaw 
size to the grain size [3-51.  For fine grain bodies 
as in the materials of interest here, a contribution 
of the internal stress to failure may not disappear 
until flaw sizes of the order of 100 times the grain 
size has been reached [4, 5], in which case the 

Griffith equation can be modified by adding 
their contribution to the applied stress. The 
second somewhat related condition that can 
prevent the simple Griffith equation from being 
fully valid is if microcracks form. One may then 
be dealing with a large number of cracks, in 
which case the simple Griffith equation may no 
longer be valid and solutions for the multiplicity 
of cracks may not be available. 

Even in the absence of sufficient data to check 
the equality of the Griffith equation there are 
experimental clues that either or both of the above 
effects may be occurring. First, fracture stresses 
of crystallized glasses are typically higher than 
the apparent glass because the Young's modulus 
and the fracture energy typically increase, while 
flaw sizes may not change significantly [6, 7]. 
Thus, for example, a drop in strength in the 
crystallized glasses below that of the parent glass 
as observed by Atkinson and McMillan implies 
the contribution of internal stresses or microcracks 

T A B L E  I Original data (1) calculations 

to the failure of the material. Second, Young's 
modulus falling below that of the glass (occurring 
in two of the heat treatments of Atkinson and 
McMillan) is a strong indication that microcracking 
is occurring. On the other hand, only one case of 
a low Young's modulus corresponds with a heat 
treatment giving a strength below that of the 
parent glass. The unusually low strength is not one 
of these cases and hence is not explained by an 
unusually low Young's modulus (see Table I), 
which could thus imply internal stresses. It should 
be noted that microcracking has been suggested as 
the cause of such deviations in Freiman and 
Henches' [6] study of Li20-SiO~ glass-ceramics 
and the study of Freiman e t  al. on BaO-SiO2 
glass-ceramics [7], and was also indicated by 
Sahoo e t  al. [8]. It is further pertinent to note 
that in Freiman and Henches' Li20-SiO2 studies 
that these deviations were suggested at mean free 
paths within an order of magnitude of those in the 
present study. Thus depending upon the actual 
grain size, the degree of nucleation and the 
particular heat treatments, microcracking may 
have contributed to some of the results of Atkinson 
and McMillan. For those cases where the Griffith 
equation is applicable, it is important to note 
that all of the parameters may depend on the 
microstructure. 

Turning now to Atkinson and McMillan's 
analysis, they rejected the equation: 

o = A 2 d  -~/2 (2) 

Heat Hardness Young's Fracture Mean free 3"/e(5) 3"(6) c'(7) 3,(8) 
treatment (kgmm -2) modulus stress path, ~. (Jm -2 ~m -I) (Jm -2) (#m) (Jm -2) 
temperature (• 10 o Nm -2) (• 107 Nm -2) (~m) 
(~ 

640 640 3.5( 2 ) 9(3) 0.25 0.23 6.9 45 10.4 
690 660 8 7(4) 0.28 0.06 1.8 26 1.6 
720 730 7 17 0.18 0.41 12.3 16 6.5 
760 630 12 20 0.13 0.33 9.9 20 6.4 
810 590 4.5(2) 17 0.18 0.64 19.2 36 23.0 
870 510 9 15.5 0.18 0.27 8.1 20 5.5 

(1)Basic data read as well as possible from data plots o f  Atkinson and McMillan [1] 
(2)Values, below that o f  parent glass (E = (5.4 • 0.6) • 101~ N m  -2)  
(8)Value slightly below that o f  parent glass (af = (9.7 • 0.6) X 107 N m-2)  
(4)Value below that o f  parent glass (of = (9.7 • 0.6) X 107 N m  -2)  
(5)Calculated from Equation I assuming A 1 ~ 1 
(6)Calculated from 3"/e assuming e = 30 gm 
(7)Calculated from Equation 5, assuming A 6 = 140; i.e. so the average flaw size is again about 30 ~m 
(8)Calculated from "r/c assuming c = e'  
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where A2 = a constant of proportionality and 
d = the grain size. This rejection was based only 
on their evaluation of strength and grain size data, 
i.e. neglecting their significant, nearly three-fold 
variation in Young's modulus, and the undetected 
but also possibly significant variations in fracture 
energy, as shown in Table I and discussed below. 

Thus, while their experimental data 'allows 
them to reject Equation 2, it does not allow them 
to reject the possible correlation of d with the 
flaw size. However, this rejection of Equation 2 is 
most likely correct based on more recent results 
considering the ratio of the likely flaw sizes 
(20 to 50gm) to the grain sizes (~  1 ~m). Flaw 
sizes larger than grain sizes are essentially in- 
dependent of the grain size and grain size controls 
strength only when the flaw size is similar to or 
less than the grain size [9-11 ].  

Atkinson and McMillan next considered the 
relationship: 

o = A 3 )t- 1/2 (3) 

where A3 = a constant, and X= the mean free 
path between crystalline phase. Two factors 
should be considered in applying this relationship. 
The first is that there is an upper limit of mean 
free path beyond which this cannot apply. When X 
is large in comparison with the flaw size, the 
particles have no effect on the flaw. This limit is 
not pertinent in the present case. The second 
factor is that the flaw size and mean free path 
should only be directly related when X is within 
a few times the flaw size since the flaw size is in 
fact dependent on the spacing between particles 
limiting its size. Thus, in analogy with the question 
of grain size-flaw size correlations as the flaw 
becomes substantially larger than the mean free 
path, it is difficult to conceive how the flaw is 
limited by the spacing between the grains sur- 
rounding the flaw when it was not inhibited by 
such spacings through or around which the flaw 
has already propagated. In the present case mean 
free paths are of the order of 0.25/am, about two 
orders of magnitude below the expected flaw size. 
Hence one may question the applicability of 
Equation 3 unless the mean free path dependence 
arises from other than flaw correlations, for 
example due to internal stresses or microcracking. 

There is a second relationship of strength to the 
mean free path not discussed by Atkinson and 
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McMillan. This results from the possible de- 
pendence of ~/on mean free path [12] ;i.e. 

"Y --'= 'Yo "I- A 4 / L  (4) 

where ~'o = the fracture energy of the matrix 
L = particle spacing and A4 = a constant. Here 
flaw sizes substantially larger than the mean free 
path are allowed and one considers the effect 
(on the fracture energy) of the crack front 
interacting with the particles. Freiman and 
Hench found neither Equation 3 nor 4 fit their 
Li20-SiO2 data very well. As will be shown 
below, Equation 4 would not fit Atkinson and 
McMillan's data either. 

Atkinson and McMillan apply Equation 3 to 
their data since they did indeed find a correlation 
between strength and the inverse square root of 
the mean free path. It is at this point that their 
approach may be questioned. First, while the 
data shows a dependence of a on X-1/2, the line 
does not pass through zero as required by 
Equation 3, but in fact has a negative intercept. 
Thus, it also does not fit Equation 4 which gives a 
positive intercept. Atkinson and McMillan neglect 
the non-zero intercept and assume that strength 
is directly correlated with fracture energy, a 
situation Contrary to both the analysis given 
below, and the wide Variation in Young's modulus 
(see Table I), and thus calculate a fracture energy 
from the slope of their a versus X-1/2 plot. They 
obtain a value of 0 .2Jm -2 and suggest that this 
low value is consistent with fracture initiation 
occurring in the glass phase. This is unlikely since 
no silicate glass system, or in fact any ceramic 
glass system, is known which has such a low 
fracture energy. Typical fracture energies to be 
expected are at least 20 to 30 times the values 
that they  calculate [ 13 ].  

The importance of considering the above 
parameters can be seen by attempting to further 
analyse the data of Atkinson and McMillan. First, 
assuming that the basic Griffith Equation holds 
and that the flaws are of a simple, regular shape 
(for example a typical penny shape), we can 
calculate the ratio of the fracture energy to the 
flaw size from their strength and Young's modulus 
data, obtaining the results shown in Table I. 
Furthermore, based on fracture energy measure. 
ments in other similar systems including the 
LiO2-SiO2 system [6] one can calculate the size 
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of such simple flaws to be of the order of 30/~m. 
Such sizes are substantiated by fractography, 
which is generally applicable to glassy or fine grain 
bodies [11, 14]. Fig. 1 is an example, showing 
the failure4nitiating flaw in glass-ceramic samples 
fractured after either tumbling with abrasive or 
diamond grinding. It should be noted that while 
tumbling of samples with abrasive grit in a mill is 
a convenient method for obtaining a population 
of samples that do not have too wide a spread of 
strength, it commonly produces a flaw shape 
which is of the size suggested, but is more difficult 
to characterize adequately numerically for exact 
calculation since the flaw is not a simple planar 

flaw, often being part of a Hertzian cone-type 
crack. On the other hand, machining of ceramics, 
typically by diamond grinding, usually produces 
simple, elliptically shaped flaws which can usually 
be characterized quite adequately for numerical 
analysis, see [10] and Fig. lb. 

Assuming that the flaw size is constant at a 
typical value of 30/~m, which as discussed above 
is a reasonable value for similar systems, the 
fracture energies 3', can be calculated for each heat 
treatment (Table I). Two resultant values are 
clearly extreme. The very high value is for a heat 
treatment having an unusually low Young's 
modulus. Such a high apparent fracture energy is 

Figure 1 Keatite glass- 
ceramics fracture origins 
from (a) tumbling round 
rods with an abrasive and 
(b) diamond grinding pa- 
rallel with the tensile axis 
prior to flexure testing. 
The specimen in (a) had a 
fracture stress of 19000 
p.s.i, and the one in (b) 
14 000 p.s.i. (which gives 
a calculated fracture energy 
of ~5Jm-2 from the ob- 
served flaw size and shape). 
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consistent with microcracking, as is the low 
modulus.  The other extreme value of  fracture 
energy, which is unusually low, is for the heat  
t reatment  that  gave an unusually low strength. 
This lower apparent  fracture energy would be 
consistent with internal stress effects, as is the 
low fracture strength. Thus, the major deviations 
are consistent with two of  the three heat  
t reatments showing significant deviations in 
Young's modulus and strength. 

It should be noted that  if  internal stresses or 
microcracking are significant, then the common 
tendency for an approximate ly  constant  flaw 
size may not  be valid. Probable variations in flaw 
sizes can be est imated using relationships 
developed for indentat ion-caused cracks. Such 
relationships, which have also been used to 
calculate flaw sizes from impact  and abrasion, 

give [151 

C = A s ( H Z / E T )  1/a ~ A 6 ( H / E )  2/a (5) 

where H = h a r d n e s s  and A s  and A6 are pro- 

por t ional i ty  constants. Table I shows flaw sizes 
and fracture energies using Equation 5. This makes 

the two cases that  were extreme using a constant 
flaw size, even more extreme. It also reduces the 
somewhat high values o f  3' for the 720 and 760 ~ C 
heat  t reatments  to values that  are probably  more 
realistic. This variable flaw estimate also increases 
the fracture energy for the 640 ~ C heat  t reatment  
which had a low Young's modulus,  and somewhat 
low strengths. The variable flaw t reatment  thus 
gives extreme fracture energies for all samples 
having either low Young's moduli ,  strength or 

both.  
In summary,  neffher of  the above analyses gives 

a good correlation of  flaw size and mean free path,  
again suggesting that  correlation of  X with strength 
may be due to other causes. Fur thermore,  
assuming either constant or variable flaw sizes 
gives reasonable fracture energies of  a few J m  -2 , 
except  for bodies showing deviations in strength, 
Young's modulus or both .  These deviations are 

consistent with possible internal stresses or 
rnicrocracking. Finally,  these observations clearly 
show the ut i l i ty of  more comprehensive measure- 
ments;  i.e. at least including fracture energy, and 
flaw measurements along with strength and 

Young's modulus measurements.  
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Reply to "Comments on "Glass-ceramics 
with random and oriented microstructures 
Part 2 The physical properties of  a random- 
ly orion ted glass-ceramic"" 

We agree that our data on mechanical properties 
are incomplete in the sense that we did not under- 
take an exhaustive study of these. However, as will 
be obvious from our paper, the mechanical strength 
investigations formed but a small part of an overall 
study of the properties and microstructures of  a 
glass-ceramic composition. 

We rule out the occurrence of microcracking in 
our materials since a detailed study of all the glass- 
ceramics by electron microscopy was undertaken 
[1] and the presence of microcracks would have 
been readily detected. There is no doubt however 
that the Li20-SiO2 glass-ceramics of Freiman and 
Hench [2] were grossly microcracked as is clearly 
shown by the micrographs in the paper. Cracks are 
clearly visible in these materials even at a magnifi- 
cation as low as X350 and these have lengths of 
the order of 30 ~tm. The evidence for microcracking 
of the BaO-SiO2 materials of Freiman e t  al. [3] 
seems much less certain though we do not contest 
the contention of Freiman and Rice that these 
were in fact microcracked. It should be pointed 
out, however, that both the Li20-SiO2 and BaO-  
SiO2 materials largely contained crystals having a 
spherulitic morphology and this is likely to result 
in microcracking and/or high internal stresses. The 
glass-ceramics we produced contained lathlike and 
equant crystals of small dimensions and there was 
no evidence of spherulitic morphology whatsoever. 

We wish to make it clear that while we discount 
the applicability of the equation: 

o = K i d  -1/: 

We do not reject the possible correlation o f d  with 
flaw size because the mean free path, X, is depen- 
dent on both d and Vf, the volume fraction of 
crystalline phase. 

We agree that if the flaw sizes were indeed two 
orders of magnitude greater than the mean free 
path values, there would be difficulty in under- 
standing how the flaw size could be limited to the 
spacing between the grains. We believe, however, 
that there is no evidence whatsoever that flaws of 
this magnitude exist in our materials. Furthermore, 
the evidence for the existence of flaws having these 
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dimensions in other glass-ceramics is not soundly 
based. We are unable to understand how the work 
of Freiman and Hench [2] can be used on the one 
hand to support the contention that microcracking 
leads to deviation of mechanical properties and can 
also be used to support the proposition that all 
glass-ceramics contain flaws of a size of about 
30/an. Surely, fracture energy measurements on 
grossly microcracked materials will only yield in- 
formation concerning the extent of  microcracking 
and will indicate an approximately constant "flaw 
size". Later in their comment, Freiman and Rice 
allow the possibility that flaw sizes may not be 
constant, especially for microcracked materials, yet 
they use mechanical property data obtained for 
microcracked materials to support their contention 
of constant flaw size. Use of our hardness data to 
calculate a mean flaw size in apparent agreement 
with the value suggested earlier does not add 
anything because the value obtained for flaw size 
depends directly on the value obtained the constant 
A6 and no justification is given for the value chosen 
by Freiman and Rice. 

We have no comment to make on the fact that 
our data do not fit the Lange equation except to 
add that the results of Hing and McMillan [4] 
did not fit this equation either. 

The calculations given in the comment unfor- 
tunately do not advance the understanding of the 
microstructural dependence of mechanical proper- 
ties of glass-ceramics. This may not be surprising 
if, as we believe, the estimates of flaw sizes are 
unsound. What has been clearly established by 
experimental study is the relationship between 
o and X 4/~ as given in Fig. 4 of  our paper. This 
same relationship was found to hold for a dif- 
ferent family of glass-ceramics by Hing and Mc- 
Millan [4] and has been further confirmed in more 
recent unpublished work. The failure of the curve 
in Fig. 4 to pass through zero may indicate the 
existence of some bias in the data. We suggest 
that an approximately constant internal stress 
might account for this. If  the stress varied for 
different heat treatments, it would have to be 
proportional to X -1/2 to account for the straight 
line relationship. While this cannot be ruled out, 
we can find no basis for a relationship of this 
kind. 
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Pre-precipitation in AI-O. 1 wt % Cr ahoy 

Tracer diffusion measurements in ahiminium 
show that the 3d transition metals, particularly 
chromium, iron and manganese, diffuse with high 
activation energies [ 1 -3 ] .  Kinetic studies on 
supersaturated A1-Cr solid solutions lead to an 
activation energy of 3.14 eV for the decomposition 
process [4]. It would be interesting to check 
whether these large values of the activation energy 
have any bearing on the interaction between 
chromium atoms and vacancies in A1-Cr alloys. 
The pre-precipitation phenomenon in a quenched 
A1-0.1 wt%Cr alloy is studied in this investi- 
gation by electrical resistivity measurements and 
transmission electron microscopy. The isothermal 
annealing data are analysed to evaluate the 
magnitude of the chromium-vacancy binding 
energy. 

The A1--0.1%Cr alloy was prepared from 
99.999% pure aluminium and a master alloy con- 
raining 5% chromium. The ingot, after homo- 
genization at 600~ for 120h, was reduced in 
a number of stages to a 0.1 cm diameter wire. 
Electrical resistivity measurements were carried 
out at liquid nitrogen temperature on samples 
with a length to area ratio of 7.47 x 103 cm -1,  
using a precision Kelvin bridge. Samples for 
isochronal and isothermal annealing treatments 
were quenched from 500~ into iced brine at 
0 ~ C and the as-quenched resistivity pq measured 
immediately. Isochronal treatments were carried 
out at intervals of 10 ~ C in the temperature range 
0 to 100 ~ C for a fixed time of 5min at each tem- 
perature; the resistivity PT was measured after every 
step. Isothermal studies were made in the 
temperature range 0 to 30~ by measuring the 
resistivity Pt of the sample as a function of time. 
A final anneal at 70~ for 30 min was used to 
measure the resistivity p=, corresponding to the 
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resistivity after completion of the recovery stage. 
The samples for electron microscopic examin- 
ation were obtained by electro-polishing strips 
3.0 cm x 1.5 c m x  0.02 cm quenched from tem- 
peratures in the range 500 to 600 ~ C into brine at 
0 ~ C and aged for 24 h at 20 ~ C. 

The results of  the isochronal annealing 
experiments are shown in Fig. 1 where the dif- 
ference in resistivities, Pq-PT,  is plotted against 
temperature. There is a prominent recovery stage 
in the temperature range 0 to 40~ which is 
similar to that observed in a number of aluminium- 
base alloys [5]. The experimental data for the 
kinetics of this recovery stage are shown in 
Fig. 2 as plots of AD/Apo against time where 
Ap = P t -  P~ and Apo = On--p~.  The errors in 
the experimental points are small (< 5%) in the 
early stage of annealing, becoming significant 
(~  15%) in the later stages. The kinetics are of the 
first order for long annealing times, as deduced 
from the linearity of the In (s time 
plots, with transients present in the early stages. 

u 

o_l--- 

I 4 
o _ o -  

w 

6 4'o 8b 
Temperature, (~ 

Figure 1 Isochronal annealing of AI-0.1%Cr aUoy 
quenched from 500 ~ C. 
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